Skip to main content

Featured Post

Product Design of a 4 wheel differential drive robot

A Multilayer Neural Network Based Obstacle Avoiding Robot | ROS | Simulation

This is an obstacle avoiding robot which I and Sooraj Krishna built in ROS using STDR simulator. The robot is making decision based on a 3 layer Neural Network. The learning algorithm used is back-propagation (which we wrote in python). The network design is shown below.

The 4 inputs are distances from sonar sensors placed on the Robot. The two outputs are linear velocity on x -axis and angular velocity on z-axis. The Neural Network is first trained using the data captured from joystick controlling the simulated Robot. Then the  trained weights are used in the NN for controlling the Robot. This is the first version that is trained with small training set. The video is showing the Robot avoiding obstacles on its own.

This is after a bit more training.

NB: The video is playing a bit more faster than the actual simulation as you can see from the time showing in simulator.

NB: Among two outputs one is for angular velocity. For turning right the value will be positive and for turning left it will be negative. The network was unable to converge since the output has negative values. I had to shift the range so that all the output values are positive. Need to play with this some more time to figure out the rest. :-)

Comments

Popular posts from this blog

Plymouth theme for Ubuntu

Bored of having the same boot animation screen again and again? There are plenty of Plymouth themes available out there. This is a theme I created by slicing some cool gif files I found online. You can download the theme and find the installation steps on my github account. ( https://github.com/krishnan793/PlymouthTheme-Cat )  The theme is created for Ubuntu 16.04. But this can be installed on previous versions with slight modification. If you have a slow computer then you can watch the whole animation loops. (The VM I used to record the screen was fast though. :))

Remote access your BeagleBone Black using vnc

Before going into how to share desktop with your BBB I assume you have a proper ssh access to your BBB. (through USB) (if not read this ) Also this tutorial is for BBB with Debian installed (type cat /etc/*-release to know which distro you are currently using. Or refer here ) First install the vnc server in BBB.(After logging into BBB) ssh root@192.168.7.2 apt-get install x11vnc Then go to your local computer and open a terminal window. Install a vnc viewer like vinagre. sudo apt-get install vinagre Now its time to start vnc server in BBB. x11vnc -auth /var/run/lightdm/root/:0 -forever This will start a vnc server at port 5900. Note this server setup is temporary. If you want to remotely connect to your BBB after a reboot type the above command again. Go to your local computer and type  vinagre 192.168.7.2::5900 A remote desktop will be shown if all goes well. Try exploring other options in x11vnc using (in BBB) man x11vnc The se

Product Design of a 4 wheel differential drive robot

I have been thinking of creating a small mobile robot from scratch. From scratch means, go through all the steps of a product development. Design the overall architecture, design the circuits, make 3D model of the parts, 3D print the parts and finally integrate with ROS. The methods I followed may not be the best practice. The only aim is to reach from idea to actual product (prototype). Features: 4 Wheel Differential Drive Camera WiFi IMU GPS(optional) Overview A 4 wheeled differential mobile robot with wheel encoders, camera, WiFi, IMU and GPS(optional). The first thing I did was to come up with an overall architecture. Raspberry pi 3 will be the heart of the robot. Pi Zero was considered in the beginning, but eventually had to  change because of the lack of support for ROS. Even though able to compile ROS from scratch, it became so hard to compile other packages needed for the project. Since I do not want to use pi to directly control motors, I had to design a